Derivation of LF when the rainfall is ignored.

The Leaching Fraction (LF) equation used in the calculation of Nitrate -nitrogen loading to the ground water is:

 $LF = [ET*Cli*10^{-6} - Clc] / [ET*Clp*10^{-6} - Clc]$

Where:

LF= Leaching Fraction.

ET= Seasonal evapotranspiration (kg/ha).

Cli= Chloride concentration in the irrigation water (mg/l)

Clp= Chloride concentration in the percolating water below the crop root zone (mg/l).

Clc= Amount of chloride taken up by the crop (kg/ha).

The equation is derived using the definition of leaching fraction and the mass balance equation for chloride

The Leaching Fraction (LF) is defined as:

where:

Vp: Volume of percolating water below the crop root zone (l).

Vi: Volume of irrigation water (l).

The volume of irrigation water is:

$$Vi = Vp + ET \dots (2)$$

where ET is seasonal evapotranspiration (1)

Substituting eq.2 into eq. 1 results in eq 3.

$$LF = Vp/(Vp + ET)....(3)$$

By Mass balance under steady state conditions, the chloride input equals the chloride output

input=output

$$Cli * Vi = (Clp * Vp) + Clc (4)$$

Where:

Cli= Chloride concentration in the irrigation water (mg/l).

Vi = Volume of irrigation water (1).

Clp= Chloride concentration in the percolating water below the crop root zone (mg/l).

Vp= Volume of percolating water below the crop root zone (1).

Clc= Amount of chloride taken up by the crop (mg).

Substituting eq. 2 into eq. 4 and solving for Vp results in eq. 5

$$Cli *(Vp + ET) = (Clp * Vp) + Clc$$

 $Cli * Vp + Cli * ET = Clp * Vp + Clc$

$$Cli*ET - Clc = Clp*Vp - Cli*Vp$$

$$Cli * ET - Clc = Vp (Clp - Cli)$$

$$Vp = [(Cli * ET) - Clc] / [Clp - Cli](5)$$

```
Solving eq. 3 for Vp results in eq. 6
```

$$Vp = [LF * ET] / [1-LF] (6)$$

Substituting eq. 5 into eq. 6 and changing ET and Clc units to kg/ha and then solving for LF results in eq. 7

Vp = (LF * ET) / (1- LF) = [(Cli * ET) - Clc] / [Clp-Cli] [Clp - Cli][LF * ET] = [1-LF][(Cli * ET) - Clc] LF*ET*Clp - LF*ET*Cli = ET*Cli - Clc - LF*ET*Cli +LF*Clc

LF(ET*Clp - ET*Cli +Cli*ET - Clc) = Cli*Et - Clc

 $LF = [ET*Cli - Clc] / [ET*Clp - Clc] = [ET*Cli *10^-6 - Clc] / [ET*Clp *10^-6 - Clc].....(7)$

Where:

LF= Leaching Fraction.

ET= Seasonal evapotranspiration (kg/ha).

Cli= Chloride concentration in the irrigation water (mg/l)

Clp= Chloride concentration in the percolating water below the crop root zone (mg/l).

Clc= Amount of chloride taken up by the crop (kg/ha).

Leaching fraction calculation including rainfall

Vr=volume of rainfall Clr= chloride of rainfall

Volume of the irrigation plus rainfall is:

Vr+Vi= Vp+ET

Vi=Vp+ET-Vr (8)

Mass Balance of the chloride is:

$$Cli*Vi + Clr*Vr = Clp*Vp + Clc....$$
 (9)

Substitute eq 8 into 9 and solve for Vp

Cli(Vp+ET_Vr)+(Clr*Vr=(Clp*Vp)+Clc

Cli*Vp+Cli*ET-Cli*Vr+Clr*Vr=Clp*Vp+Clc

Cli*Vp-Clp*Vp=Clc-Clr*Vr+Cli*Vr-Cli*Et

Vp=Clc-Clr*Vr+Cli*Vr-Cli*Et/ Cli-Clp.....(10)

Take eq. 6 and substitute equation 10 into eq. 6

Vp = LF*ET/1-LF....copy of eq.(6)

LF*ET/1-LF= Clc-Clr*Vr+Cli*Vr-Cli*Et/ Cli-Clp

:LF*Et(Cli-Clp)= (l-LF)(Clc-Clr*Vr+Cli*Vr-Cli*Et)

(LF*Et*Cli) - (LF*ET*Clp) = Clc - (LF*Clc) - (Clr*Vr) + (LF*Clr*Vr) + (Cli*Vr) - (LF*Cli*Vr) - (Cli*Et) + (LF*Cli*ET) - (LF*Cli*Vr) - (LF*Cl

Simplify remove left and right side Lf*Et*Cli

-(LF*ET*Clp) = Clc - (LF*Clc) - (Clr*Vr) + (LF*Clr*Vr) + (Cli*Vr) - (LF*Cli*Vr) - (LF*Cli*ET) + (L

move terms with Lf on left side -(LF*ET*Clp)+(LF*Clc)-(LF*Clr*Vr)+(Lf*Cli*Vr)= Clc- (Clr*Vr)+(Cli*Vr)- (Cli*ET)

Lf(-ET*Clp+Clc-(Clr*Vr)+(Cli*Vr)) = Clc+Vr(Cli-Clr)-Cli*Et

LF = Clc + Vr(Cli - Clr) - Cli*ET/(Cli*Vr) - (Clr*Vr) - ET*Clp + Clc

Multiple numerator and denominator by - sign

LF= Cli*ET-Clc- Vr(Cli-Clr)/ Et* Clp - Clc -Vr*(Cli-Clr) eq. 11

LF= Cli*ET10^-6-Clc- Vr(Cli-Clr)10^-6/ Et* Clp10^-6 - Clc -Vr*(Cli-Clr)10^-6 eq. 12

ET and Vr and Clc in units of Kg/ha and Cl in units of (mg/l)