Derivation of Leaching fraction calculation including rainfall

The Leaching Fraction (LF) equation used in the calculation of Nitrate -nitrogen loading to the ground water is:
LF $=[$ Cli*ET10^-6-Clc- Vr(Cli-Clr)10^-6]/ [Et* Clp10^-6 - Clc -Vr*(Cli-Clr)10^-6]
Where:
LF= Leaching Fraction.
ET = Seasonal evapotranspiration (kg/ha).
Cli= Chloride concentration in the irrigation water (mg / l)
Clp= Chloride concentration in the percolating water below the crop root zone (mg / l).
Clc= Amount of chloride taken up by the crop (kg/ha).
$\mathrm{Vr}=$ volume of rainfall $\mathrm{Kg} / \mathrm{ha}$
Clr= chloride of rainfall(mg / l)
The equation is derived using the definition of leaching fraction and the mass balance equation for chloride
The Leaching Fraction (LF) is defined as:
$\mathrm{LF}=\mathrm{Vp} / \mathrm{Vi}+\mathrm{Vr}$.
where:
Vp: Volume of percolating water below the crop root zone (l).
Vi: Volume of irrigation water
Vr Volume of rainfall or water supplied from a second source of irrigation water. (i.e. surface water source 1 ground water source 2 both having different chloride content)

Volume of the irrigation plus rainfall is:
$\mathrm{Vr}+\mathrm{Vi}=\mathrm{Vp}+\mathrm{ET}$
$\mathrm{Vi}=\mathrm{Vp}+\mathrm{ET}-\mathrm{Vr}$
where ET is seasonal evapotranspiration (l)
Substituting eq. 2 into eq. 1 and solving for VP results in eq 3.
$\mathrm{Vp}=[\mathrm{LF} * \mathrm{ET}] /[1-\mathrm{LF}] . . .$. (3)

By Mass balance under steady state conditions, the chloride input equals the chloride output input=output

Cli*Vi $+\mathrm{Clr} * \mathrm{Vr}=\mathrm{Clp} * \mathrm{Vp}+\mathrm{Clc}$.
Subsitute eq 2 into 4 and solve for Vp
$\mathrm{Cli}\left(\mathrm{Vp}+\mathrm{ET}_{-} \mathrm{Vr}\right)+(\mathrm{Clr} * \mathrm{Vr}=(\mathrm{Clp} * \mathrm{Vp})+\mathrm{Clc}$
Cli*Vp+Cli*ET-Cli*Vr+ Clr* Vr=Clp*Vp +Clc
Cli*Vp-Clp*Vp= Clc-Clr*Vr+Cli*Vr-Cli*Et
Vp $=$ Clc-Clr*Vr+Cli*Vr-Cli*Et/ Cli-Clp.
Take eq. 3 and substitute into equation 4

```
LF*ET/1-LF= Clc-Clr*Vr+Cli*Vr-Cli*Et/ Cli-Clp
:LF*Et(Cli-Clp)= (l-LF)(Clc-Clr*Vr+Cli*Vr-Cli*Et)
(LF*Et*Cli) - (LF*ET*Clp)= Clc-(LF*Clc)-(Clr*Vr)+(LF*Clr*Vr)+(Cli*Vr)-(LF*Cli*Vr)-(Cli*Et)+(LF*Cli*ET)
Simplify remove left and right side Lf*Et*Cli
-(LF*ET*Clp)= Clc-(LF*Clc)-(Clr*Vr)+(LF*Clr*Vr)+(Cli*Vr)-(LF*Cli*Vr)-(Cli*Et)+(LF*Cli*ET)
move terms with Lf on left side
-(LF*ET*Clp)+(LF*Clc)-(LF*Clr*Vr)+(Lf*Cli*Vr)= Clc-(Clr*Vr)+(Cli*Vr)- (Cli*ET)
Lf(-ET*Clp+Clc- (Clr*Vr)+(Cli*Vr))= Clc+Vr(Cli-Clr)-Cli*Et
LF= Clc+Vr(Cli-Clr) - Cli*ET/ (Cli*Vr) - (Clr*Vr) -ET*Clp+Clc
Multiple numerator and denominator by - sign
LF= Cli*ET-Clc- Vr(Cli-Clr)/ Et* Clp - Clc -Vr*(Cli-Clr) ..... eq. 5
LF= [Cli*ET10^-6-Clc- Vr(Cli-Clr)10^-6]/[ Et* Clp10^-6 - Clc -Vr*(Cli-Clr)10^-6] .....eq. }
ET and Vr and Clc in units of Kg/ha and Cli , Clr, and Clp are in units of (mg/l)
```

